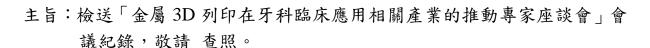
社團法人中華民國牙體技術學會 函

機關地址:104090 台北<mark>市松江路 42 號 11 樓</mark>

聯絡方式: 陳映安秘書 電話: (02)2543-1839

電子郵件:adtrocjmlin@gmail.com

受文者:如正副本受文單位


發文日期:中華民國109年12月17日

發文字號: TADT(2020)字第 1091217001 號

速別:普通

密等及解密條件或保密期限:普通

附件:如說明

說明:

一、旨揭會議為推動國內有關牙科金屬 3D 列印法規修定與產業發展所 遭遇之問題探討,檢送會議紀錄如附件並作為日後修法之參考依據, 敬請查照。

二、摘錄會議要點如下:

- ▶依據現行法規,醫療器材產品之加工生產單位,需符合 GMP 優良 製造標準。牙體技術師依其專業判斷,製作符合臨床品質要求之牙 體技術成品,係依牙體技術師法執行牙體技術業務,其成品非屬大 量製造之醫療器材產品,故牙體技術所自無需符合 GMP 相關規 範之必要。
- ▶食藥署於107年1月12日所公告之「積層製造(3D列印)醫療器材管理指引」,將「牙科相關植入物、補綴物」列屬醫療器材,與牙體技術師法所定義之牙體技術業務相互牴觸。

(食藥署於 107 年 1 月 12 日所公告之「積層製造(3D 列印)醫療器材管理指引」,將「牙科相關植入物、補綴物」等應屬牙體技術業務之成品列屬醫療器材,有違牙體技術師法立法意旨,凌駕於牙體技術師之專業地位。)

▶對於牙科臨床用途之金屬 3D 列印,本會建議依「積層製造(3D 列印)醫療器材管理指引」之材料部分,將此技術所使用之金屬粉末原材料列屬醫療器材,並以相關法規進行監督管理;最終成品之安全性及有效性審查,應回歸牙科臨床專業,由牙技師與牙醫師依其專業知識進行把關。

裝

訂

▶科技發展日新月異,3D列印設備不斷推陳出新,各式成分與設備所搭配完成之成品,其物化性質監督審查非屬牙技師及牙醫師執業專業。本會建議可另行訂定 3D列印製程之管理辦法供廠商遵循,牙技所則可導入通過此管理辦法之原料及設備,並依其所規範之加工參數進行生產製造。期能將金屬 3D列印此一新型技術導入牙科臨床醫療應用,在確保成品之安全性及有效性的前提下,增進全體國人健康福祉。

正本:衛生福利部、南部科學園區管理局、工業技術研究院雷射與積層製造科技中心、

國立陽明大學

副本:本會秘書處

理事長 類 仁 志

裝

訂

· 练

國立陽明大學

金屬 3D 列印在牙科臨床應用相關產業的推動專家座談會會議紀錄

一、 會議出席名單

專家會議主題	金屬 3D 列印在牙科臨床應用相關產業的推動	
專家會議時間	109年11月02日上午10:00-12:00	
專家會議地點	國立陽明大學 醫學院國際交流中心 405 室	
會議主席	李士元 特聘教授	
專家邀請名單		
姓名	單位	職稱
周珉如	衛生福利部	審查員
上官天祥	南科管理局	組長
林晏如	南科管理局	小姐
趙仁志	社團法人中華民國牙體技術學會	理事長
劉松河	工業技術研究院 雷射與積層製造科技中心	組長
黄偉欽	工業技術研究院 雷射與積層製造科技中心	經理
江卓培	國立臺北科技大學 機械系	教授
林元敏	國立陽明大學 牙醫系	副教授
林宗翰	國立臺灣科技大學 色彩與照明研究所	副教授
張閔傑	成功大學口腔醫學部	兼任主治醫師
林惠卿	千美醫研股份有限公司	牙技師
王正欽	中佑精密材料股份有限公司	副總經理

二、 會議紀錄

1. 專家會議開幕

(1.) 李士元 特聘教授

本次會議重點與目的: 現有的南科醫材聚落中,牙科金屬 3D 列印製程 與材料已完善整合及串聯方案,唯獨缺乏完善的醫療法規之審查與認證流程, 使得多數產業端與臨床端躊躇不前。有鑑於此,本團隊規劃本次專家會議之 招開,並邀請衛生福利部、南科管理局、臨床醫師代表、牙體技術師代表、 及產業代表之專家先進,以完成國內牙科金屬 3D 列印之醫療法規推動為目標,一同與會討論國內法規的修正與推動。

2. 專家會議議程

(1.) 張閔傑 醫師: 牙科金屬 3D 列印臨床需求與國際應用現況

以活動假牙製程為例,傳統製程容易累積誤差、重現性差的現象,使用數位製程可減少製程時間、提高精度,以達到精準醫療之目的。目前牙科使用的 CAD/CAM 有無法加工的區域,可借由 3D 列印技術來克服。近年的臨床研究結果指出,金屬列印製程在臨床表現與接受度大幅提升,特別是使用較佳的鈦合金材料,對臨床治療將有較佳的助益,因此,金屬 3D 列印未來在牙科的應用將大幅增加(如:all-on-4、金屬植入物等),特別是對於老年化社會的國家。

(2.) 王正欽 副總:牙科金屬 3D 列印之材料種類與產業現況

公司為國內第一家專職 3D 列印金屬粉末製造公司、國內唯一可提供客製化氣噴金屬合金粉末公司,而金屬粉末製造過程中,氧含量、微量為素、粉末的後處理將是三大關鍵要素。而目前牙科常用的金屬粉末(鈦、鈷铬合金等),依據不同品牌,成分將有些微差異,其中 Bego 品牌,已通過 ISO22674 認證,是一支專門應用於牙科器械、牙科產品製造之金屬粉末。而根據目前

國內外金屬粉末市場的現況,有以下幾點討論:

- 1. 不同成分與列印設備,完成成品的機械強度也不一樣,該如何訂立標準規範?
- 2. 在國外 3DP 牙材管控上,牙技所可將通過 FDA 認證粉末,列印成 品並交付給醫師(FDA 粉末→牙技所列印→牙醫師治療),而此流程 可套用至國內嗎?
- 3. 現階段進口粉末品質參差不齊,如何訂定規範,以確保粉末品質?

(3.) 劉松河 組長: 牙科金屬 3D 列印之製程管控差異與現況說明

牙科常用的鈷铬合金材料中,在鍛造與鑄造都已有 ASTM 的標準規範可依循,而目前尚無金屬 3D 列印的 ASTM 標準規範。就製程角度而言,列印會因粉末差異、含氧量、列印擺放角度等參數的不同,造成性質不穩定,甚至是低於鑄造的標準性質要求(ASTM F75)。而 3D 列印粉末製程與塊材傳統加工不同,建議製程與流程需有適當的管控模式與規範。

(4.) 林惠卿 技師: 牙科金屬 3D 列印之產品開發方向與未來應用

在積層製造(3D 列印)醫療器材管理指引中,規定材料項中的 F3710 基 底金屬合金、最終成品項的牙科相關植入物、補綴物為列屬醫療器材,但金 屬 3D 列印技術應用在假牙製程並非是最終產品,將有認證疑慮產生。除此 之外,在查驗登記相關法規問題仍有以下幾點可討論:

- 1. 金屬 3D 列印製作是否延用現行規範(GMP 精要模式)
- 2. 假牙產品皆為客製化,不易設定規格
- 3. Worse Case 目前尚無標準可參考
- 4. 是否有其它需檢附之資料

(5.) 周珉如 審查員: 牙科金屬 3D 列印國內醫療器材審查方向說明

本署審查將遵循 107/1/12 公告之積層製造(3D 列印)醫療器材管理指引辦理,適用範圍係指產品具可量化之規格(如:長、寬、高、形狀等),並可提供產品於規格範圍內進行 3D 列印製造及驗證,且在同樣的生產環境下(製程參數、材料成分、應用軟體等)應有相同效能及品質之醫療器材,且醫療器材製造廠商,應清楚定義可製造調整參數及其範圍(最大至最小規格範圍)。而目前國內醫療院所,倘若應用 3D 列印技術於醫療器材的研發及製造,應使用衛福部許可之產品,或與已取得 3D 列印醫療器材許可證之廠商合作。

而基於積層製造技術之多樣性,指引未對單一種類醫療器材提供全盤研發之考量,未涵蓋完整上市申請相關規範要求部份,仍需遵從一般非積層製造醫療器材規範要求。而 3D 列印只是醫療器材製造技術之一(原料控管、列印特性、參數設定、後處理等步驟管控),產品仍需符合藥事法相關規範,管理原則並無不同。

- 3D 列印軟體工作流程管控: 需符合資料格是轉換之正確性、是否有 再確效進行之需要及標準化格式保存。
- 2. 品質與製程管控:醫療器材製造廠應符合 GMP 相關規範,而此部份不在此討論與說明。而針對製造原料/材料回收利用部份,材料回收對產品性能之影響,亦可由成品測試中加以驗證,故審查時毋須要求檢附材料回收相關流程與評估資料;製程部份,屬於品質管理系統範疇,審查時毋須要求檢附資料;後處理部份,廠商應於技術文件中說明是否進行後處理程序。
- 3. 成品測試: 傳統製造產品審查原則=3D 列印產品審查原則,並依個 案產品結構設計、材質效能,評估臨床前試驗項目。
- 4. 器材描述: 廠商應說明積層製造技術種類,及檢附製造流程圖,並 說明是否使用加工助劑、添加劑與交聯劑,或是否進行後處理程序; 廠商應檢附結構圖樣,而在非規格品時,需詳佳說明可製造調整之

設計參數及其最大到最小的規格範圍。

- 成品測試_清洗與滅菌:清潔確效需判定各種不純物/殘留物已從最終 產品移除,在滅菌過程確效依現行傳統製造產品審查原則要求。
- 6. 成品測試_生物相容性:依據產品實際與人體接觸之部位與時間,執行相對應之生物相容性評估項目,不宜逕以金屬材質證明代替 3D 列印醫療器材之生物相容性評估。
- 其他相關要求: 植入式醫療器材發生微粒子釋出的風險、非規格品可能涉及風險(治療流程、資料傳送資訊安全、軟體確效報告)。

3. 討論意見總結

(1.) 黃偉欽 經理

- 國內現行牙技所並無標準的品質管理系統,在對於基底合金與補綴物列入醫療器材審查是衝突的,而在現行法規制定下,牙技所取得合法認證之醫療器材產品,是否能直接使用與製造。
- 成品要求與醫療法規衝突,在製造廠端,需符合確效系統,材料無 法回收與管控,但在牙技所端並無確效系統的執行。
- 3. 單純針對材料與設備做醫療器材管理,但在審查辦法上納入 GMP 管理條件,對於目前國內牙技所是衝突與矛盾,因目前牙技所並非 GMP 管制下的項目,是否屬內醫妝組與心口師研擬相關應對辦法。
- 4. 依現有審查標準中,是否可以拿現有 3D 列印燒結後的塊材或試驗 棒試驗後的數據做為認證的依據,而非以實物審查條件進行審查。 假牙在 3D 列印製作上有各式不同樣式,僅可提供依據標準試片測 試之數據做為依據,較難以 worse case 方式呈現。
- 現行之醫療法規應公告清楚與明確,以提供牙技所或設備廠商遵循。

(2.) 周珉如 審查員

- 1. 所謂補綴物項目是指符合醫療器材管理辦法:附件一品項,舉例:植牙療程中的兩種品項,一為牙科用瓷粉/瓷塊(牙技所採購後進行瓷牙的製作),其將列為原材料審查範疇,二為"瓷牙"項目,將列為補綴物審查範疇。而屬於原材料項目之範疇,應可直接在牙技所使用,其屬於牙技師與牙醫師的醫療行為。
- 衛福部目前是審查與核可製程與材料項目,後續製造則是交由牙技師與牙醫師進行,針對牙技師的製造行為與醫療行為需跨部會討論, 並非醫妝組單獨可決定。
- 3. 目前署內審查原則是遵循原材料/粉末條件做審查,依循傳統原材料 在牙技所使用與操作條件下做審查,而對應到 3D 列印部份,應依 循操作流程(切層厚度、製作流程等)與指引進行製作,舉例,若是 原材料,製造廠商應提出相對應的製造條件與製程參數與條件供審 查,並提供後續操作人員遵循製作。
- 4. 成品性規格定義為成品非材料,舉例瓷牙為例,若產品為原材料項 目則無成品性規格範圍,若產品為瓷牙本身,則需提供相對應的程 品性規格範圍。
- 5. 產品只要是屬於醫療器材項目,在國內或國外皆需符合 GMP 廠規範,並需依照法規申請醫療器材法規之認證。所有醫療器材之管理,皆需符合當地醫療器材法規之辦法。

(3.) 趙仁志 理事長

- 1. 牙技所並非 GMP 廠,管理上並無法依循 GMP 辦法執行。
- 2. 牙技所在購買 3D 列印製程與材料,目前衛福部並未列管。
- 3. 若製程設備、材料皆為合法項目,牙技所製造後是否也合法,或是同樣需完成 GMP 流程申請後才算合法。
- 4. 若依照牙體技術師法管理,國內牙技所是不需要有 GMP 廠認證,

國外牙技所則是需要有 ISO 廠的認證才可進行製作。此部份未來是 否有相關標準的制定與解套。

(4.) 李士元 特聘教授

- 以瓷粉為例,因材料具備特殊性,因此在管制與審查上較為嚴格, 但產品一但通過審查後,產品製造與使用將依操作人員程度差異而 有不同的品質,產品最終的把關應交給牙技師與牙醫師進行,不建 議導入GMP管制辦法管理。
- 2. 建議應將 3D 列印製程、材料與最終成品的審查管理辦法分開,製程與材料遵循 GMP 與醫療器材審查辦法進行,而最終成品則交由 牙技師與牙醫師醫事人員辦法管理與把關。
- 法規規範對象應在定義清楚與明確,何種辦法是規範醫療器材廠商, 何種辦法是規範操作人員。
- 4. 建議金屬粉末設備,應提供不同尺寸的產品來驗證,列印後成品需相同甚至是更好目前金屬材料的表現。並模擬現行牙科臨床應用情境,測試設備與材料之表現,在提供相關規格、規範、參數給操作人員使用。
- 5. 最終的製程產品,應符合牙科金屬產品的條件與規範。應不管成品製作的流程或方式。以 3D 列印高分子材料認證規範,應以不同的列印方式、角度、參數等製作 worse case,並提供 worse case 的檢驗數據做為審查依據。
- 6. 應就事論事,將法規面與品管面分開處理,品管面是否交由牙技學 會與政府機構、專業人士針對品管制訂新的辦法;而法規面則是針 對醫療器材廠商進行制訂與修整(GMP或 TFDA 等法規),避免產品 發展的限制與布局。

(5.) 劉松河 組長

- 在風險管理角度而言,3D列印技術的風險是固定的,但應用於骨科 產品製作時,審查條件會被拉高檢視,而應用於牙科產品製作時, 則是可交由醫事人員把關,審查條件不對等。
- 材料控管、設備控管後,可交由專業人員製作,在材料控管面向, 現有多項辦法可等同到控管的角度,但設備項目是否容易被控管。
- 3. 現行國內法規的檢驗與申請流程,未來是否可套用到國外。

(6.) 王正欽 副總經理

1. 若申請 GMP 廠認證後,國外材料進台灣是否還需要申請一次醫療 器材認證。

(7.) 張閔傑 醫師

1. 臨床上確實需要金屬 3D 列印技術與產品,礙於法規上的限制無法使用。最後討論的結論,牙技所是可購買 GMP 合格與認證的材料進行成品製作,但最終是否需要針對製作環境與訓練需做規範與配套措施。

(8.) 上官天祥 組長

 感謝本次與會的專家學者及衛福部醫療器材審查員,在本次專家會 議舉辦下,其討論成果豐碩,且有助於南科在醫療產品佈局上,應 同時兼顧到法規與品質兩面向的發展,而未來在發展規劃上,將可 根據今日討論到的關鍵項目(法規、產品品質等)持續向下發展與探 討。